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ABSTRACT 

The construction and nonlinear aspects of phase- 
locked-loop and automatic frequency control systems are 
discussed. The nonlinear systems are approximated by 
linear systems, and a time lag i s  introduced into the sys- 
tem. Several methods of designing a digital controller for 
a second-order system with a large time lag are inves- 
tigated. The time lag is assumed to be 10 to 20 times 
larger than the sampling period. The principal criterion 
used is the deadbeat response to  a ramp input, although 
other criteria are considered. Several illustrations of the 
type of system response attainable with these digital con- 
trollers are presented to enable the reader to judge the 
merits of this controller for his particular application. 

1. INTRODUCTION 

The linear and nonlinear behavior of continuous automatic frequency controls (AFC) and phase- 

locked loops (APC) is well known (Ref. 1-5). A linear analysis of a high-speeddigital (sampled-data and 

quantized) phase-locked loop has  been investigated (Ref. 6). The present problem presents two new 

considerations for an AFC system. The proposed system will contain a large pure time delay and will be 

partially digital with a slow sampling rate. 

An investigation of the nonlinear characteristics of the error-detecting devices used in AFC and 

phase-locked loops shows that the AFC system can be made linear over its u s e h l  operating range, or it can 

be made nonlinear if such a characteristic is desired. A phase-locked loop used as an AFC system will be 

1 
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I 2 

inherently nonlinear except for very smal l  error signal magnitudes. Thus a nonlinear analysis may be 

necessary for two reasons. Under operating conditions of continuous disturbances, the system error will 

often build up to a large magnitude, since the system will not immediately take corrective action because 

of the large time delay. 

I I .  GENERAL SYSTEMS 

Automatic frequency control systems and phase-locked loops differ mainly in the method of error 

detection, the input and output variables, and an integration in the phase-locked loop. The phase-locked 

loop can be used a s  an  AFC system. We will consider digital AFC and digital APC systems with two pure 

time delays and two samplers within the control loop. Such systems can be visualized if one considers a 

receiver located in a planetary satellite that is to be tuned (controlled) from Earth. The samplers and delays 

correspond to the sending of error s ignals  (coded pulses) from the vehicle to Earth and the transmitting of 

control commands (coded pulses) from Earth to the satellite. Figure 1 is a block diagram of two such systems. 

Both systems can be inherently nonlinear, with the major contributions lumped in the error detecting mech- 

anisms. The output of the VCO i s  usually limited so that the VCO is essentially a limiter. However, i t s  

range usually exceeds the input range. Both error-detecting elements are usually linear for small error signal 

magnitudes and are useless  when the error signal magnitude exceeds some limit. 

A s  a first s tep herein, the nonlinear aspects  of each device are  investigated and i t s  linear approx- 

imation i s  derived. Secondly, if a phase-locked loop is to be used, the nonlinear behavior of the system 

dictates the “pull-in” range of the system (Ref. 5). The pull-in characteristic i s  used to s e t  the sweeping 

characteristic of the system when a sweep mode is added to the system. 

Although no actual nonlinear analysis is presented herein, the nonlinear characteristics of the error 

detectors are discussed. Several different methods of analysis for sampled-data nonlinear systems are  a l so  

discussed, along with a special problem created by the long time delay. The long time delay appears to ra ise  

the order of the difference equation describing the system, which would indicate that a second-order system 
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with a time delay (larger than the sampling period) could not be adequately described by a phase plane 

representation (or an incremental phase plane). 

Fortunately, some AFC systems can be described by linear methods. A major portion of this work 

is devoted to the design of a digital controller for a linear AFC system with a long t ime lag. This design 

will be based on “optimum control through digital compensation” (Ref. 7) or “deadbeat response” (Ref. 8). 

Both single-rate and multirate systems will be investigated. Minimization of the sum of squared-error 

samples is used to achieve an optimum compromise between the ramp and step response of the system. 

The large time lag increases the complexity of the optimum digital controller, especially in the case of the 

multirate controller. 

A subrate controller, which receives n error signals for each command (corrective) signal it sends to 

the plant to be controlled, is also investigated. With this additional information about the system performance 

(more error information), it may be possible to design a digital controller to yield optimum dead beat response 

for more than one type of input. The problems of designing a subrate controller are presented. 

3 
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111. NONLINEAR ASPECTS OF ERROR DETECTION 

A. Frequency Detector 

The function of the frequency-sensing error detector is to provide a signal (dc voltage) that is 

proportional to the difference between the input and output frequencies (ae = wi - o 0 ). The general scheme 

for attaining this goal is shown in Fig. 2. The frequency of the feedback signal oo i s  shifted an amount 

oc by the mixer. The input signal with a frequency wi and the shifted feedback signal are both fed into 

a second mixer. The output of this mixer i s  passed through a high-gain limiter, a narrow-band amplifier, 

and a discriminator to produce the error signal voltage w e .  

To begin a mathematical description of the frequency detector, let the input signal R ( t )  and the 

feedback signal C ( t )  be given by 

R ( t )  = R sin oi t 

C ( t )  = C sin (ao t + +c) 

The output u ( t )  of the oc mixer is given by 

u(t )  = V ( C )  sin [(ao - oc) t + q ~ ~ l  

where the reference input Q ( t )  to the mixer is given by 

Q 0) = Q sin (ac t + +q)  

Thus the total input Z(t) to the nonlinear element section of the second mixer is given by 

Z ( t )  = R ( t )  + u ( t )  

Z ( t )  = R sin oi t + V (C) s in  (au t + +u) 

where 

(3) 

(4) 

(7) 
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I t  h a s  been shown that the output m (t) of a nonlinear device with a double sinusoidal input is of 

the form 

+ ~t~ sin (a, t + +ol) - M,, sin (ay t - +,,I 

Now, if the narrow-band amplifier is designed to pas s  only the component of the output of the non- 

linear element of interest-Mll s in  [(oi - oa + oc) t + $,,I - the output h (t) of the narrow-bend amplifier 

will be given by 

h (t)  = H sin (ai - oo + oc) t +  +h (10) 

The amplifier should have a center frequency of oc radians and a half bandwidth hob on each s ide of oc 

such that oc - bo, 5 oi - oo + oc 

magnitudes). Of @eater importance, the bandwidth must be narrow enough to reject all other components of 

the nonlinear device. 

oc + bo, within the expected range of signal deviations (error 

The output of the narrow-band amplifier h (t) is fed into a symmetrical high-gain limiter (essentially 

a relay), whose output k (t) can be expressed as 

where K, = 1.273. 

The second narrow-band filter also has a center frequency of oc radians and is essentially flat 

over the narrow bandwidth 2A ob so the gain K (io) of the filter is given by 

5 
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K ( j o )  = 1 

K ( j o )  = 0 all other frequencies 

Then the output of the second narrow-band filter is given by 

A typical discriminator is shown in Fig. 3 (Ref. 9). I t  consis ts  of a primary L, C, tuned to the I 

center frequency a,, and two secondary circuits L, C, and L ,  C, tuned at a, + boc and a, - bo,. 

Each diode develops across i t s  load impedance R ,  a voltage that varies with frequency a s  shown in Fig. 4a- 

assuming a fixed input amplitude and suitable smoothing (dc filtering) after the diode. The output is the sum 

I 

i 

I 
of these two diode outputs, which are of opposite sign as shown in Fig. 4b? If the discriminator is operating I 

in the linear region between a, - A 0, and wc + bo,  the output e ( t )  of the discriminator is given by 
l 

where K ,  is the discriminator constant. 

Of course the discriminator curve (S-curve) of Fig. 4b can be made to assume almost any arbitrary 

shape through manipulation of the tuned circuits R, C, and R, C, and substitution of more complicated 

circuits in their place. In this case the characteristic of the discriminator may never be linear, and i t s  

output becomes a function of the frequency difference as given by 

e ( t )  = E ,  (ai - w,) (15) 

Thus the frequency detector can be represented a s  shown in Fig. 5, in which both the linear and nonlinear 

representations are given. 

'See Ref. 9 for details. 

6 
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I 6. Phase Detection 

I The function of a phase detector is to produce a signal (dc voltage) proportional to the difference 

between the input and output phases. In this case  the input and output frequencies appear a s  a linearly 

increasing (with time) phase. When the input and output phase difference is a constant, the output frequency 

must equal the input frequency (except where phase changes continually perfectly offset the frequency 

difference). Thus the phase-locked loop and the phase detector can a l so  be used a s  frequency control 

system and frequency measuring device, respectively. There are two suggested basic methods of phase 

detection -multiplication and diode detection (Ref. 1). 

I 

, The simplest method of phase detection is to multiply the two sinusoidal signals and filter the output 

to remove the undesirable component. This method will yield either a sum or difference of the two frequencies. 
~ 

I 
Let the inputs to the multiplier be given by 

1 R 2 ( t )  = r 2 cos o2 t 

The output E, (t) of the multiplier is given by 

Now let 

'1 '2 
E m  - =  

2 
o1 t + $, = 61 

Then 

E ,  (t) = E, s in  (8, + 6,) + E, s in  (8, - 62) 

7 

(18) 

(19) 
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If this multiplier output i s  passed through a low-pass filter, the filter output i s  

e ,  ( t )  = E ,  sin (0,  - 02) 

If the phase difference 8, - 8, is small, the linear approximation 

( 2 0 )  

i s  valid. However, i t  should be noted that the output e, ( 1 )  is proportional not only to the frequency difference 

but also to the input sinusoidal amplitudes r 1  and r , .  This condition might be eliminated by some amplitude 

correction scheme. 

A second method of phase detection, known as a “balanced phase detector” (Ref. l ) , is  composed of 

peak detecting diodes. L e t  the inputs to the detector be given by 

e l ( t )  = E ,  cos 4, 

e 2 ( t )  = E ,  sin 4, 

One diode i s  fed the sum of e l  ( t )  and K e 2  ( t )  while the other is fed the difference between e l  (t) and 

% e 2  ( t ) .  It h a s  been shown that the difference E d  between the output of the summing diode and the difference 

diode is given by 

Now, if E ,  >> E, 

Then 

and thus 

E d  = E ,  sin - 42) 

a 

__ 
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Actually a more accurate analysis of this detector shows that there is really a detector constant caused by 

the half-wave rectification of the diodes and a necessary smoothing filter. If we lump this constant and the 

input amplitude E ,  into one constant K the output of the detector becomes P’ 

Again, for small error signal amplitudes - 4, << r), the linear approximation 

Thus the phase detector can be represented as shown in Fig. 6, in which both the linear and non- 

linear representations are given. 

9 
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IV. BLOCK DIAGRAMS OF A F C  AND APC SYSTEMS 

Block diagram representation of the elements (other than the detector) in an AFC or APC system i s  

straightforward. Using the conventional Laplace transform notation and the sampled-data starred-function 

notation (Ref. 7, pp. 98 - 102) to represent digital systems, the following transfer functions are defined. 

-TdS  
time delay = E  = exp ( - T , s )  

* 
digital controller = D ( s )  

control function and VCO (plant) = G (s) 

where T ,  is the communication time in seconds between the vehicle and the Earth. 

The digital controller is the portion of the loop located on the Earth and is completely flexible 

within the limits of physical reliability. We will assume that the control function and VCO contains a zero- 

order hold, a simple lag  network for output smoothing, and an integration with a n  APC system. Assuming 

these components and the detector transfer functions derived earlier, the linear and nonlinear block diagrams 

for the AFC system are  as shown in Fig. 7. Similarly, Fig. 8 shows the nonlinear and linear block diagrams 

for an APC system. 

10 
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V. THE NONLINEAR AFC PROBLEM 

The basic  mathematical tool for the study of continuous nonlinear systems i s  the nonlinear differen- 

tial equation describing the system. Similarly, the nonlinear difference equation is the basic tool for analysis 

of the nonlinear sampled-data system (Ref. 10 - 12). 

We sha l l  consider the nonlinear AFC system shown in Fig. 7a with several simplifying assumptions. 

The two samplers are syncronous and have the same sampling rate. The total dead time 2 T ,  is an integral 

multiple of the sampling period T(2Td = UT). This  allows the entire delay to be lumped in the plant function 

G (s), which now h a s  the form 

-T 
(1 - c ") K 

G ( s )  = 
s (1 + T ,  s) 

(27) 

We shall assume that the nonlinear element (S-curve) is  frequency-insensitive. (If we consider a sinusoidal 

variation in the input frequency, the characteristic of the nonlinear element does not depend on the frequency 

of the sinusoidal variation.) Since the nonlinear element is only amplitude-sensitive and the sampler is only 

frequency-sensitive, the error sampler and the S-curve can be interchanged. We shall assume that the digital 

controller transfer function D (s), when transformed into the z-domain (z-transformation), can be expressed 

as the simple ratio of two polinomial in powers of z - l  so that 

* 

- \ ,  

1 + b 2 - l  + b ,  z-, + b ,  z - ~  + - - - 

Upon z-transforming the plant function G (s) we obtain 

-T /  T 
K z u - 1  (1 - E 1 )  

After considering the above assumptions and transformations, the block diagram of Fig. 9 is derived. 

11 

(28) 



a I 

I JPL Technical Memorandum No. 33-98 

Now we shall derive the difference equation that describes the digital AFC system shown in Fig. 9. 

Let  a ( k T )  denote the value of the variable a ( t )  a t  the kth sampling instant (t = AT) .  Consider only the value 

of the variables at the sampling instants. Then 

and 

Thus 

- T / T 1  - T /  T e ( k T )  = w i ( k T )  - E wo (kT - T) - K (1 - E 1) aom ( k T - U T -  T) 

+ al  m (kT - U T -  2 T )  + a 2 m  (kT - UT - 32') + - - 
- b ,  y ( A T -  U T -  2 T )  - b ,  q ( k T - U T -  3 T )  - .  1 

We shall assume that the output of the nonlinear element (S-curve) is related to the input by 

(33 )  
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Now 

oo (kT) = ai (kT) - e (kT) 

Let 

- T /  T 
a = 1/K ( 1 -  E ') 

- T / T 1  
p =  E 

But 
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Therefore, 

+ - . - 1 - b ,  oo ( k T - v T - 2 T )  + ( b ,  b 2 )  w0 ( k T - v T - 3 T )  

-T/T 
+ ( b 2  E '- b 3 )  wo (kT-uT-4T) + - - - (38) 

Thus we can express the present value at the kth sampling instant of the outpu :rms of pas 

values of the input and the output. A similar expression can be obtained for the system error e ( k t )  by 

substituting from Eq. (38) into Eq. (37). 

Example 1.  Simple nonlinear AFC System 

To simulate a simple AFC system as shown in Fig. 9, 

Assume 
-1 a. + a ,  z 

D ( z )  = 
1 + b ,  2-l  

v = 14 

Thus 

1 

-T/T 
K ( 1 - e  l )  

o0 (kT) = { a0 F [ ai (kT - 157') 

-T/ T - b l  a0 (kT- 16T) + E b ,  wo ( A T -  17T) 

14 

in 
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or s ince 

-T/ T 
e (kT) = ai (kT) + b ,  ai (kT - 16T) + E b ,  ai (kT - 17T) 

1 

-T/ T 
{ a o F  [ e  (kT - 15T)] + a ,  F [ e  (kT  - 16T) 1 1 - 

K ( 1 -  E 1) 

-T/T - b , e ( k T -  16T) - E b ,  e ( k T -  17T) (42) 

Following the general assumption often used in continuous nonlinear systems, we will assume that 

the S-curve can be approximated by a piecewise linear equivalent nonlinear element. We will  consider the 

approximation shown in Fig. 10. 

Thus 

m ( k T )  = K , e ( k T ) +  ( K 1 - K , )  el for e1  I e ( k T )  L e, Range 2 

m (kT) = K ,  e ( A T )  - (K1 - K , )  e l  for - el 2 e (AT) 2 - e2 Range 4 

m ( k T )  = - [ K 2 e ( k T ) +  (K1 -K,)el l  for e ( k T )  2 - e, Range 5 (43) 

Thus, for Range 1 [ I e (kT) I< e l ]  , the linear difference equation becomes 

e (kT) = ai (kT) + b,  ai (kT - 16T) + E 
-T/ T 

b 2 a i  (kT - 17T) 

7 I - [ a o K 1  e (kT - 15T) + al K ,  e (AT - 16T)I 
-T/ T 

K ( 1 -  € 1) 

-T/T - b ,  e (AT - 16T) - E b ,  e (kT - 17T) 

15 

(44) 
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Or, in general, 

e ( k T )  = ul e (kT - 152') + u2 e (kT - 16T) + u3 e ( k T  - 177') 

-T/ T 
+ ai (kT) + b ,  ai (kT - 16T) + E b ,  ai (kT - 17T) (45) 

Thus, even in this simple example, we will obtain a difference equation of order (w  + 2), where v is 

the ratio of the time delay to the sampling period (Ref. 13). By analogy to a phase plane study of continuous 

systems (without time delays) described by an ( w  + 21th-order nonlinear differential equation, one might con- 

clude that a phase plane study - or incremental phase plane (Ref. 14) -for this digital AFC system will not 

be sufficient to describe the system performance. An (V + 2)th-order phase space may be required for an 

accurate system analysis (Ref. 14, p. 613). Unfortunately, our analogy i s  weak without a knowledge of 

rigorous phase plane treatment of continuous (or sampled-data) systems with pure time delays? 

A common method of handling the pure time delay is to approximate the term (or other notations 

for the time delay) with some type of finite ser ies  approximtition such as the first few terms of a Taylor ser ies  

or a Pad6 approximation (Ref. 15, pp. 546 - 553). This would lead directly to the higher-order differential 

equation which would indicate the use of a higher-order phase space solution. Actually, an infinite ser ies  is 

needed to describe the delay. Thus, i t  seems that an infinite-order phase space is required to study the 

system performance, but each successive dimension added to the phase space is of decreasing importance 

in the solution. 

If direct solution of linear differential equations with time delays is attempted in the Laplace domain 

by retaining the 

indicates the necessity of a higher-order phase space for the study of systems with pure time delays. However, 

as with the series approximation, i t  is often possible to obtain a valid solution from the first  few terms (roots) 

of the approximate solution. 

term, the solution will have an infinite number of roots in the s-domain. This,  too, 

Continuous systems with time delays are mathematically described by differential -difference 

equations (Ref. 18). A differential - difference equation can be considered an infinite-order differential 

equation, and i ts  solution may have many of the properties of an infinite-order differential equation (such as 

an infinite number of possible oscillations). If the time delay is small, the differential -differential equation 

can usually be approximated by a finite-order differential equation. 

References 16 and 17 contain extensive bibliographies on the time delay problem. 

16 
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- 

However, a second-order differential -difference equation can usually be handled in the phase plane. 

Initial values for the time interval Td 5 t 5 0,  where T, is the t ime delay, are required for the solution of 

the differential -difference equation a s  opposed to initial conditions for the differential equation. The phase 

portrait is handled in a conventional manner except that one must keep track of time in the phase plane to  

correct for the time delay. 

The phase plane for a differential -difference equation h a s  many unnsual properties. The phase 

portrait may cross itself. This  occurs because an infinite number of solutions exist  at any one point in the 

phase plane. The correct solution depends upon the initial values, which are really an infinite collection 

of initial conditions. 

Thus, unless the initial values are restricted, a complete investigation of the system performance 

requires an infinite number of phase portraits, since each set of initiaI values will usually yield a different 

phase portrait. This  might be considered analogous to the infinite phase space requirement for the infinite- 

order differential equation. 

The above discussion indicates that a phase plane analysis of the sampled-data system with a pure 

time lag is sufficient to describe the system performance. However, such an analysis is hopeless unless the 

initial values at the sampling instants can be restricted by a knowledge of the operating conditions. 

17 
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VI. LINEAR ANALYSIS 

It has been shown that the phase-locked loop operates in a linear manner only when the difference 

between the input and output phases is small. A difference between the input and output frequencies appears 

as a difference in phase that increases linearly with time. Since no initial or sudden change in the input 

frequency can be corrected a t  the output in a time l e s s  than the pure time delay, a large difference between 

the input and output phase will exist  when a sudden change in the input frequency occurs. A linear analysis 

will be invalid during this important portion of the system operation. Because of the long t ime lag, even very 

s m a l l  “unpredictable” frequency errors will cause nonlinear operation of the system. For these reasons, a 

linear analysis of a digital phase-locked loop with large time delays s e e m s  meaningless. 

However, i t  was also shown that the AFC can be designed to operate in a linear fashion over most 

of i t s  useful range of automatic frequency control. When the operating conditions leave the linear range, the 

system often switches to a sweeping search mode to return the operating point to the linear mode. Thus a 

linear analysis of the AFC system i s  the logical starting point in the investigation of digital AFC systems. 

The design of an AFC system with a large time delay requires some kind of “predictor” to achieve 

satisfactory control if we wish to compensate for the time delay. A common type of “predictor” controller 

is a digital controller based on “deadbeat” response (Ref. 7). Variations of this basic technique are ripple 

free (Ref. 7) and multirate deadbeat controllers (Ref. 19). Each of these controllers is designed for a specific 

input, and the response to other inputs is often very poor (especially when the ratio of the time delay to the 

sampling period i s  large). Design on the principle of minimization of the sum of the squared-error-samples i s  

sometimes used to achieve a compromise between the designs for two or more different inputs (Ref. 7). Statis- 

tical considerations are also sometimes used as a basis  of design of a digital controller when statistically 

described inputs or disturbances (or both) are expected under operating conditions (Ref. 7). 

Each method of design will be applied to the digital AFC system described previously. The results 

and expected responses can be compared and evaluated in the light of proposed applications. In most cases ,  

these methods will not provide adequate control and some other method should be sought. 

One such method is the subrate controller. The sampler a t  the output of the subrate controller 

operates n times slower than the error sampler, as opposed to the multirate controller, whose sampler operates 

n times faster than the error sampler. Although the design procedures for the subrate controller are not 

completed, the philosophy of the subrate controller is covered herein. 

18 
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A. Deadbeat Digital Controller for an AFC System 

First,the design of a digital controller for the system in Fig. 1-3 i s  considered on the basis of 

“minimum sett l ing time” or deadbeat’ response. To achieve deadbeat response, the system error must be 

identically zero a t  every sampling instant after a specified interval of time following the application of the 

test input. Note that this does not specify the system error between the sampling instants. Minimum sett l ing 

time is achieved by holding the interval of nonzero error to a minimum within the limits of system stability 

and a physically realizable digitaI controller. Later we will sacrifice the minimum sett l ing time to reach a 

compromise be tween satisfactory ramp deadbeat response and satisfactory step deadbeat response. 

The following assumptions are made to simplify the design of a digital controller for the system 

shown in Fig. lla. The two samplers have the same sampling period T and operate syncronously. The ratio 

of the pure time delays Ta to the sampling period is an integer. Thus the time delays can be combined into 

one time delay appearing in the plant for simplicity. The entire loop gain K ,  K can be lumped into a plant 

gain K. The plant also contains the zero-order hold and time lag. Thus the transfer function G(s) of the 

plant is given by 

g 

G ( s )  = 
I +  T , s  

?he z-transformation of the plant transfer function yields 

G(z)  = 

Z -1 
- T / T I  

1--E 

where 

Let  D ( z )  represent the z-transform of the digital controller pulse network. Then the t-transformation 

representation of the system shown in Fig. l l a  is a s  shown in Fig. I lb .  

’ We shall consider deadbeat response to specify the system only at the sampling instmtts. Others (Ref. 8) 
require zero error for all time, once deadbeat response has been achieved. 

19 
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Let 

By conventional block-diagram reduction we obtain 

and 

Now, E (2) can be expanded to yield 

E ( Z )  = e g + e l z - 1 + e Z ~ - 2 + e 3 z - 3 + . . .  

Therefore 

However, E ( 2 )  is defined as  

(54) 
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Thus 

eo = e ( t )  lCzO 

e1 = e ( d  

e2 = lCZ2T 

If E ( 2 )  can be expressed in a finite ser ies  in 2-l  (ek = 0 for all k greater than some value K,), the 

system error will be zero at each sampling instant after the K,th sampling instant. Now consider inputs 

R (s) of the form 

R ( s )  = l/s" 

Then 

Let W,(z) be of the form 

W J Z )  = (1 - 2-1)" F(z '1)  

Then the system error will be a finite series in 2- l  given by 

E ( z )  = A(2") F(z'1) 

(57) 

(59) 

(60) 

and the requirement of zero error at the sampling instants after a finite time will be satisfied. 

To satisfy the requirement of a physically realizable digital controller and reduce system stability 

problems, the following restrictions must be imposed upon the functions lV,(z) and 1 - W,(z). 

1. V , ( Z )  should contain as its zeros all the poles of G ( z )  which lie on or outside the unit circle 

of the z plane. 

2. 1 - W , ( Z )  should contain as its zeros all the zeros of G (2) which l ie  on or outside the unit 

circle of the z plane. 
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3. 1 - W , ( z )  should contain z7) as a factor when G (z) contains 2% as a factor (TI will usually be 

unity if G (z) does not have a time delay,and n will usually be greater than unity if G (s) has  

a time delay). 

Example 2. General Deadbeat Des ign for a Ramp Input 

Assume that a ramp input [ r ( t )  = t ]  is applied to the system shown in Fig. 11. Then 

Tz" 
R ( t )  = 

2 
(1 - z-1) 

-T/ T 1 
Also assume that G (z) is  stable ( E < 1). According to the deadbeat criterion stated earlier 

Expanding Eq. (62) and equating coefficients of like powers of z-" in Eq. (62) and (64) yield the following 

s e t  of equations 
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b l - 2 =  O 

b 2 - 2 b l  + 1 = O 

b 3 - 2 b 2 + b l  = O 

The solution to these equations is given by 

b ,  = 2 

b = 3  

b = 4  

2 

3 

b4 = 5 

b V = v + l  

bv+l  = -ao+  v + 2 

bv+2 = -a1 - 2a0  + v + 3 

bvt3 = -a2 - 2 0 ,  - 3a0 + v + 4 

bv+4 = -a3  - 2 a 2  - 3a1 - 4a0 + v + 5 
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If the system is to achieve zero error a t  the sampling instants in the shortest possible t ime,  the 

finite ser ies  in 2-l for W e ( z )  should be of the lowest possible order consistent with Eq. (66). This  is 

achieved if 

a() = + (u + 2) 

a' = - (v + 1) 

a 2  = 0 

a3 = 0 

aq = 0 

Thus 

1 - W , ( Z )  = (u + 2) z-u-' - (u + 1) z w - 2  

W,(z)  = 1 - (u + 2 )  z-u-' + (u + 1) v -2 

D ( z )  = 

(68) 

(69) 

(70) 

K ( 1  - 7% [l - (u + 2) z-y-1 + (u + 1) 2-v-21 

and the z-transform of the ramp response is given by 

+ . . .  (71) = (u + 2) z - (ut2)  + (v + 3) z'(ut3) + (v + 4) ~ - ( ~ ' 4 )  c ( z ) ramp 

From the definition of the z-transform we obtain the system output at the sampling instants to be 

C ( k T )  = 0 

C ( k T )  = k k >  u + 2  (7 2) 

0 5  k < u + 2  

24 
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Interpretation of Eq. (71) shows that the system output will follow the input with zero error a t  the sampling 

instants 2 T, + 2 T sec  after the application of the ramp input. Thus a large decrease in the sampling 

period will cause onIy a slight increase in the speed of response of the system to a ramp input when the 

sampling period is a s m a l l  fraction of the delay. 

However, the s ize  of the sampling period has a significant effect on two other aspects of the system 

performance -the system output between the sampling instants and the overshoot when the system is 

subjected to stop inputs. 

Firs t  we will consider the s tep response of the AFC system with a digital controller designed 

for a ramp input. The unit step input [ r ( t )  = u ( t ) ]  i s  defined as 

0 for t > 0 

1 for t 2 0 
u ( t )  = 

n e  z-transform of the unit step is given by 

n u s  

The z-transform of the system s tep  response is given by 

7'1 + z Y - 2  + z7-3 + z-v-4 + . . . = (v + 2) z 

Thus the step response a t  the sampling instants i s  given by 

0 for 

for 

1 for 

c (kT) = v + 2 

k L v  

k = v + l  

k 2 v + 2  

(73) 

(76) 

(77) 

25 
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I t  should be noted that the step response also has zero error a t  the sampling instants after 2 T ,  + 2 T sec.  

From Eq. (72) i t  is obvious that the overshoot is a t  least v + 1 units and may be greater between 

the sampling instants. Thus T should be large to decrease the value of v and thus reduce the step overshoot 

magnitude. However, T should be smal l  to provide adequate speed of response to ramp and s t ep  inputs. An 

optimum compromise between these two conflicting requirements is presented on page 35. 

Determination of the system output between the sampling instants requires the use  of the modified 

z-transformation, which i s  defined by 

m 

k =O 

for 

Thus, if the modified z-transform i s  expanded into a ser ies  such as 

then 

where 0 < rn 5 1. 
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The modified z-transform of the output C ( z , m )  of the system shown in Fig. 11 is given by 

K eYTS (1 - 
G(s) = 

(1 + T, s) 

so 

1) 2-11 
m T / T  - T / T 1  - m T / T  K [ ( l -  E 9 - (-E - - E  

G ( z , m )  = 

2 -1 
- T /  T i  

1--E 

and 

where G (z,m) is the modified z-transform associated with the plant transfer function G (s) so that 

which can be obtained from several different tables or direction application of the definition (78). For the 

system under study 

(83) 

(84) 

Thus the modified z-transform of the system output is given by 

27 
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The modified t-transform of the system ramp response i s  given by 

- (v  +2) T (u + 2) t I 1  - I 1 - m T / T 1  
1 -  - I v + l  v + 2  =lI 

= TI 

- T /  T - m T / T  
(1 - E 1)(1- E 1) (1 - 

[ ( 
- m T / T 1  - T I T 1  

,] E - - E  - (v  +3) + u + 3 -  2 
- T / T l  

1--E 

Thus the ramp response is given by 

0 

- m T / T 1  
1--E 

- m T / T 1  - T / T 1  
E - - E  

~ + k + l -  

where O ( r n 5 l  

for 

for 

for 

0 2 t 5 ( u +  1) T 

t = ( U + l + r n ) T  

t = ( ~ + k + m ) T  

28 



JPL Technical Memorandum No. 33-98 

Similarly, the modified z-transform of the system step response i s  given by 

(u + 2) z y - l  

- T /  T 
( 1  - E 1 ) ( 1 -  E - m T / T 1 )  

- T / T 1  - m T / T 1  r - - E  

- m T / T l  
1 - - E  

+ z7J-3 + z--4 + .  . 

'Ihus the step response is given by 

- m T / T 1  
1 - - E  

1 

for 

for 

for 

for 

( 1  - z - 9  

0 < _ t ~ u T  

t = u + m T  

O L m L l  

t = ( v + l + m ) T  

O ~ r n ~ l  

t 5 ( u +  2) T (90) 

Example 3. Des ign of Remote-Controlled Rece iver  for Earth-to-Venus Operation 

Let  US consider the remote tuning of a receiver .located in a vehicle near Venus with a digital 

controller on the Earth. With the digital controller on the Earth there i s  complete freedom to change the 

control characteristics to compensate for unexpected operating conditions in  space travel. In this case the 
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one-way communications time delay will be 140 sec (2Td = 280 sec). In the initial d e s i p  there are two 

parameters in addition to the digital controller which must be chosen. They are  the sampling period T and 

the plant time constant T , .  It has already been shown that the s t ep  overshoot and the speed of response put 

conflicting requirements on the ratio of the time delay to the sampling period. In addition, the ratio of the 

plant time constant to the sampling period also determines the response characteristics between the sampling 

instants. 

Figures 12- 16 show the ramp and s t ep  response of the digital AFC with a digital controller designed 

for a ramp input for several different ratios v of the pure time delay 2Td to the sampling period T[u = 2Td/?'] . 
In each figure the intersample ripples are shown for the case when the ratio q of the time constant of the plant 

T to the sampling period T was 0.25 ( q  = T , T  = 0.25). From these response curves i t  is obvious that the 

ratio 2Td/T = v also influences the intersample ripples. 

1 

The effect of the ratio T , / T  upon the output ripples i s  shown more clearly in the exploded view of 

the system output (Fig. 17). The same ratio of time delay to sampling period i s  used in both response 

curves of Fig. 17 (v = 14). However, two different values of T ,  / T  ( T ,  / T  = 0.125 and T , / T  = 0.25) 

were used for the exploded views showing the ramp response when deadbeat response i s  first attained. The 

ripples are reduced by increasing the ratio T , / T  in this case.  This i s  to be expected s ince a low T , / T  ratio 

indicates little filtering, and the output should approach the clamped condition between samples because of 

the zero-order hold. A s  T , / T  increases, the filter approaches a pure integration, which will allow perfect 

ramp response (no ripples). The problems of output ripples will be elaborated in the following section. 

B. Ripple-Free Design 

I t  h a s  been proposed (Ref. 7) that the intersampling can be removed a t  the expense of slower system 

response. The following is a summary of the proposed method. From Eq. (81) i t  i s  known that 

L e t  
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where 

“It can b shown that th 

(93) 

pulse-transfer function G ( 2 )  G (z,rn) a a polynomial in 2-l is the necessary 

condition for the system response to a basic input (step, ramp, parabolic, etc.) to be free from ripples after 

a reasonably short transient period has  elapsed?’’ Thus, observing the above requirement for G, (2) and 

restating the previous restrictions for deadbeat response design, the following criterion is established 

foi the design of a digital controller to provide ripple-free deadbeat response. The transfer function of the 

digital controller is given .by 

for basic input of the form R (s) = l/s” 

F (2-l) 
R (2) = 

(1 - 2-If  

Following the deadbeat design pattern, the functions We(r) and 1 - W e  ( 2 )  must be of the form 

1 - W e  ( 2 )  = z - ~  (bo + b z- l  + b ,  z-2 + b ,  2-3 + - . - ) 

(95) 

T h i s  statement (quoted from Ref. 7, p. 513) h a s  not been verified, and a fol lowing example w i l l  show that 
the above condition may be  necessary but is not sufficient. 
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where 

1. W,(z) must contain in i t s  zeros all the poles of G (z ,m) which lie on or outside the unit 

circle of the z-plane. 

2. 1 - W,(z) must contain in i t s  zeros all the zeros of G ( 2 ) .  

3. 1 - ~ , ( z )  must contain z -k  as a factor if G ( z )  contains z-k a s  a factor (k usuaIly equals 

unity unless G ( 2 )  contains a pure time delay). 

Thus, the only addition to the deadbeat response criterion is that W,(z) must contain a l l  the zeros 

of G (z). Previously, only the zeros on or outside the unit circle in the z-plane needed to be included in the 

W,(Z). 

Immediate application of the ripple-free criterion to the system proposed in Examples 1 and 2 will 

show that this criterion does not always yield a ripple-free design. Furthermore, i t  will be shown that i t  i s  

impossible to make the system output ripple-free for a ramp input without changing the plant portion of the 

system. This fact i s  hinted a t  by Jury (Ref. 8, p. 196) when he s ta tes ,  “However, the possibility of a true 

deadbeat (ripple-free) response i s  dependent on the plant transfer function . . . ” 

Example 4. Ripple-Free Design 

Consider the system of Examples 2 and 3, where 

and 

G (z ,m) = 

2 -l 
- T / T 1  

1 +  E 
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Examination of Eq. (98) reveals that G ( 2 )  has no zeros. Thus the criterion for ripple-free deadbeat 

controller design i s  identical to the previous criterion for a deadbeat controller, which yielded a system with 

output ripples for a ramp input. Thus, the proposed criterion will not yield a ripple-free response for a ramp 

input when the plant consists of zero-order hold, pure time delay, and a first-order lag. 

Now it will be shown that i t  i s  impossible to design a digital controller to provide ripple-free dead- 

beat response to a ramp input for the above-described system. 

From Eq. (92) and (93) we have 

for a ramp input 

T 2-l 

R ( 2 )  = 
2 

(1 - 2-11 

SO 

(101) 

where 1 - W,(z) should be a finite polynomial in 2-l to satisfy the deadbeat response requirements. For a 

deadbeat ripple-free response, the terms of an  expansion of C ( z , m )  in 2-l must be of the form T ( m + k )  z*~-') 

for all k greater than some finite value. 

For our system 

" 
C ( z , m )  = 

-T/T 2 
(1 - 2-9  (1 - E 1) 

(103) 



JPL Technical Memorandum No. 33-98 

Now,to satisfy the requirement for deadbeat response and physical realizability of the digital controller, 

1 - W , ( z )  should be of the form 

Thus 

- m T / T 1  - T / T  - m T / T  
T 2 -(O +2) (ao + a1 2 -1 + a2 2 -2 + . - - ) [ 1 - E - ( E  I - ,  1) 2-11 

C ( z , m )  = (105) 
- 2  - T / T  

( 1 - 2  1) ( 1 - E  1) 

Let  

- T / T 1  - m T / T 1  
E .- -E 

-T /  T 
1--E 

Then 

+ . - - + [ak + 2 a k - 1  + - - - + (k + 1) a. + (ao + al + - * * + ak) + - - - } (107) 

Thus, to satisfy the restriction on the coefficients of the C ( z ,m)  expansion mentioned above, 

a + a  p = v + r n + l  

al  + 20, + (ao + a l )  P = v + rn + 2 

0 0  

ak + 2akm1 + . . + (k + 1) a,, + (ao + a I  + - - . + a k ) p - -  v + rn + k + 1 

34 
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If the ripples are to disappear after the kth sampling period 

- T / T l  - m T / T 1  
E - - E  

an + ZU, ,~  + . . . + (n + 1) uo + (ao + al + a2 + . - + an) = k + m (109) 
- T / T 1  

1- E 

, 
I - T / T l  

Since the a’s cannot be a function of m, the various combinations of a’s and 1 - E can be lumped into 

constants M, N ,  and K to yield 

- m  T / T  
M + N E  = K + m  

or 

- m T / T l  
E = U + y m  (110) 

However, Eq. (110) h a s  no solution when u and y are not functions of m. 

Thus, i t  is impossible to design a digital controller to yield a ripple-free deadbeat ramp response 

when the open-loop plant consists of a zero-order hold, pure time delay, and a first-order lag. This  statement 

can also be proven using the design approach of Jury (Ref. 8) or Schroeder (Ref. 19). 

The ripples can be removed by changing the system plant and applying the above-mentioned criterion. 

Replacing the zero-order hold with a first-order hold is one obvious method. The addition of an integration in 

the plant (other than the hold) would be a second method. 

C. Minimization of the System Error 

It was noted that a least-settling-time, deadbeat, digital-controlled system, when designed for a 

ramp input, yielded a very large s t ep  response overshoot when the system contained a large time lag. This 

overshoot can be reduced at the sacrifice of the deadbeat response by introducing a “staleness weighting 

factor’’ (Ref. 7, p. 519) in the digital controller design. A second method of reducing the s t ep  function 

overshoot is to retain the deadbeat response but increase the sett l ing time. Both of these methods will be 

attempted. 
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A mathematically useful criterion for optimization of system parameters for sampled-data systems i s  

the minimization of the sum of the squared-error samples of the error pulse sequence. It has been shown that 

the sum of the squared-error samples can be written as 

Where the z-transform of the error pulse sequence is given by 

m 

k =O 

and the r contour is the unit circle in the z-plane. 

Application of this criterion to the design of a digital controller is straightforward and, with a small 

modification, follows directly from the design of a deadbeat digital controller. The  problem i s  to choose the 

parameters in W,(z) and 1 - F’,(z) in such a manner that the above error criterion is minimized. 

The first modification to the deadbeat response requirements will be the addition of the “staleness 

weighting factor” to the design function W,(z)  and 1 - E’,(z). The following design procedure is taken from 

Ref. 7. It will be shown that the introduction of the “staleness weighting factor” is not mathematically 

practical when the system contains a time delay that is much greater than the sampling period. 

The “staleness weighting factor” a i s  introduced s o  that 

n 
(1 - 2-1) (1 + b ,  2-1 + b ,  2-2  + - - .) 

U’&) = 

1 - a z - 1  

where the numerators of W , ( Z )  and 1 - W , ( Z )  satisfy the requirements for deadbeat response, physically 

realizable digital controller, and system stability 

36 
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so 

Thus 

Now 

In deriving (Eq. 113-115), we have assumed an input of the form 

F (2-l) 

R ( z )  = 
(1 - 2-1)" 

[F(z-')l c1+ b ,  z-I + b p - 2  + - -1 
E ( z )  = 

1 - a z - 1  

Now it i s  known that F (2-l) and r,(z) are finite series in 2-l so that 

a + a z + a z 2 +  - - .  + am+,,z(m+n) 0 1  2 
E ( z )  = 

(1 - at) 

where n 5. v + 1. 

Thus 

(116) 

(117) 

(118) 
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where 1 a 1 < 1 and the contour r is the unit circle in the z plane. This  integral is readily evaluated by 

determining the residues of the integrand at its poles inside the contour (the poles appear a t  z = u and 

z = 0). However, the pole at the origin is of order m + n, which is a t  l eas t  of order u + 1. The residue, 

assuming an order of u + 1, is given by 

which, from an engineering point of view, is mathematically impractical to evaluate. 

Thus, the “staleness weighting factor” is not a logical approach to reduce the system error when 

long time delays exist in the system. 

Assume that the system should have deadbeat response to a ramp input but that the minimum settling 

time requirement of the previous examples is not necessary. Then extra terms can be added to the digital 

controller transfer function D ( 2 )  to reduce the s tep overshoot. This method wil l  be optimized by employing 

the “minimum sum of the squared-error samples” of the error pulse sequence criterion on the selection of the 

extra terms. 

The basic requirements of deadbeat response are retained so that 
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For deadbeat response to a ramp input, W , ( Z )  and 1 - W , ( Z )  should be of the form 

- 2  W,(z) = (1 - z ') (1 + biz-' + b ,  z - ~  + b32-3  + - - - )  (128) 

(129) 

and must satisfy the conditions: 

1. W,(Z) should contain as its zeros all the poles of G ( 2 )  which lie on or outside ths 

unit circle of the z plane. 

2. 1 - W , ( t )  should contain as i t s  zeros all the zeros of G ( 2 )  which lie on or outside the 

unit circle of the z plane. 

3. 1 - We(z) should contain Z" as a factor when G (z) contains z-" as a factor. 

(n will usually be unity if G ( 2 )  does not contain a pure delay.) 

Under these conditions, it was  shown that 

b = 2  1 

b = 3  2 

3 b = 4  

b = v + l  v 

bv+l  = - a O + v + 2  

bvt2 = - al - 2a0 + v + 3 

but,,, = - - 2am-2 - 3am-3 - - - - - mao + v + m + 1 
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To obtain a minimum settling time response, i t  was shown that b,  = 0 for a l l  k 2 u + 1. By relaxing 

u + rn. In this case,  the the minimum settling time, one can arbitrarily choose values of bk’s  for u + 1 2  k 

system ramp response will have a settling time of (rn + 2) T + T ,  sec. 

However, if the b,’s are chosen arbitrarily, there is no assurance that the s tep overshoot will be a 

minimum for the amount of settling time sacrificed. Although not necessarily the same criterion as minimum 

overshoot, minimization of the sum of the squared-emor samples of the error pulse sequence is a convenient 

and logical method of determining an optimum s e t  of values for the b,’s. Pursuing this approach yields  

for s tep and ramp inputs 

- ( u + m ) ]  
E(zIromp = Tz” [ 1 + 2 ~ ’ ~ + 3 ~ - ~  + - - . +  ( w + l ) z - u + b u + l z - ( u t l  + but2  - ( u t 2 1  + . . . + bv tm 

(132) 

similarly 

For a ramp input 

where 

eu+m = l2 + 22  + 32 + - - + v 2  + (U + 1)2 + (bu+1)2  + (bu+2)2  + - - . + (135) 



JPL Technical Memorandum No. 33-98 

It has already been shown that the sum of the squared-error samples can be expressed a s  

Substiation of Eq. (134) into (1%) and evaluation of the contour integration by residue methods yields 

Minimization of this sum by conventional calculus techniques(dX /ab,  = 0) yields 

b v + n  = 0 

(137) 
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which should be expected since this i s  the minimum settling t ime  solution. Expression (138) will be useful 

as a measure of how much each extra term in the digital controller increases the ramp error. 

The next step is to evaluate the sum of the squared-error samples for a s tep input. From (133) we 

have 

+ e u + m + l  z u h t l  + - - - b u + m - l  - b U t m )  (140) 

where 

Thus 

Minimization of the s tep sum of the squared-error samples by conventional calculus techniques 

(dX, /dbk = 0) yields 
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or 

m - 2  
but3  = - (v + 1) 

m + l  
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Thus for a s tep input 

and for a ramp input 

Actually the first terms in (146) and (148) above represent the error for the first u + 1 samples and cannot be 

reduced by adding extra terms to the controller. 

Thus 

represent the sum of the squared-error samples after the controller has  begun correcting the system perform- 

ance for s tep  and ramp input respectively. These sums are plotted vs  m in Fig. 18 for u = 14. 

I t  is obvious that reducing the s tep  error leads to an increase in the ramp error and that some 

compromise value of m should be chosen. A plot such a s  Fig. 18 for a given system will aid in the selection 

of such a compromise. Figures 19 to 21 show the ramp and s tep responses of the system of Example 2 with 

a time constant ratio T , / T ,  of 0.25, a time delay ratio v of 14, and three different values of m ( m =  1,  2, and 

3, respectively). 
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VII. MULTIRATE CONTROLLER 

It has  been suggested that a multirate controller will often yie,ld a faster response with less ripple 

content than its single-rate counterpart (Ref. 20). A multirate controller i s  a digital controller whose output 

sampler operates at a sampling rate R times as fast  as the system error sampler. 

We shal l  consider the design of a multirate controller for the simple unity-feedback error-sampled 
* 

system shown in Fig. 22. The system error i s  the input to the digital controller D (s). The output of the 

digital controller (sampled control commands) becomes the input to the plant G (s). The plane output is the 

sys tem output. 

The conventional method of analyzing multirate sampled data systems i s  to replace the multirate 

samplers with R delays, advances, and samplers of the basic sampling period T (Ref. 7, p. 281 -304). This 

substitution yields the equivalent system shown in Fig. 23. From Fig. 23 i t  can easily be shown that 

Although reasonable equations for analysis, Eq. (150) and (151) are not convenient desiep equations. Thus, 

another approach is required. The zn-transform provides a design approach. 
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The 2-transform i s  defined by 

W 

= c ( k T )  z - ~  

k=0 

Similarly, we shall define the z,-transform a s  

W 

k = O  

(152) 

(153) 

The z-transform can be considered the z-transform with respect to the basic sampling period T .  The 2,- 

transform i s  the z-transform with respect to the higher rate sampling period T/n. By conventional definition 

we also have 

Similarly 

Thus 

2 = (2,)" (154) 

The following three equations can be obtained by inspection from 2,- and 2-transform block diagram 

of Fig. 24. 



JPL Technical Memorandum No. 33-98 

Thus 

now let 

Then it  can be shown that 

where K ( z )  = 8 [ K ( z , ) ]  i s  the z-transform of K (z , )  with respect to the basic sampling period T. Now 

assume that the system input R (2) i s  of the form 

F ( z - l )  
R ( z )  = 

(1 - z - I ) r  

Then it  can be shown that K (z,) and 1 - K ( z )  should be of the form 

47 
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1 - K ( z )  = (1 - z - ' ) ~  A ( z )  (164) 

i n 
4 If G ( 2 , )  has poles (1 - b4  z , ) ~  on or outside the unit circle in the z, plane or zeros :(I-u P "  2-') 

on or outside the unit circle in the zn plane s o  that G ( z , )  is of the form 

then i t  has  been shown that K (2,) and 1 - K ( z )  should also satisfy the conditions 

n k  
4 "  

1 - K ( z )  = '4' (1 - b z- ' )  N ( z )  

(165) 

(167) 

Solutions for K (z,), 1 - K ( z ) ,  and D (2,) G (2,) are given in Table 1 (reproduced from Ref. 21) for s tep and 

ramp inputs when G (2,) is stable with a small pure time delay T ,  (Td 2T + 2 T / n ,  where T is the high rate 

sampler period). However, a more straightforward approach is possible. 

The following expressions can be obtained from Fig. 24. 

(169) 

(170) 



JPL Technical Memorandum No. 33-98 

Now let 

so 

Now let the plant transfer function G (s) be of the form 

Then, in general 

where 

(m- 1) T < U T  5 m T  

(177) 
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Again, for physical realizability of D ( z ,  ) and to improve the system stability: 

- m  -1 
1. K (2,) should contain zn as a factor. 

2. K (2,) should contain in i t s  zeros the zeros of G (2,) that lie on or outside the unit circle 

of the z, plane. 

3. 1 - K ( z )  should contain in i t s  zeros all the poles of G (2,) that l ie on or outside the 

unit circle. 

Now consider inputs of the form R (s) = l/s' s o  that 

Thus the system error i s  given by 
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Let K (2,) be of the form 

where Z, (2,) contains the zeros of G (2,)  that l ie on or outside the unit circle of the z, plane. 

I Thus 

It is possible to choose the ak's and bq's in (183) and (184) so that the minimum sett l ing time is 

achieved (q attains the smallest  possible value) or the sum of the error-squared samples i s  minimized. Both 

of these criteria are illustrated in the following examples.Designs for both are illustrated for a ramp input 

in the following examples. 

Example 5. Multirate Minimum Settling Time Digital  Controller 

Consider the multirate, error-sampled, unity feedback system shown in Fig. 24 in which the controller 

sampler operates twice as fast as the error sampler (n = 2). The plant transfer function is given by 

-T/ T 
K (1 - E 

1 - E  

I) zU" 
g G ( z )  = 

Z -1 
- T / T 1  

(185) 
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and 

-T’n 1) z;22) +1 K ,  (1 - E 

G(zn) = 
-T/nT1 -1 

1 - E  ‘n 

Assume a ramp input so that 

T 2-1 

(1 - 2-11 

R ( t )  = 
2 

T 2;’ 

R ( 2 , )  = 2 

(1 - 2;l) 

T zR2 
R ( z : )  = 

2 
(1 - 2;21 

Substitution of (188) and (189) into (183) yields 

(186) 

(187) 

(188) 

(189) 
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-1  E (2,) = T { b o  + ( b ,  - 2 b o )  zn + ( b 2  - 2 b ,  + bo)  z," 

+ (b3  - 2 b 2  + b , )  z i 3  + - - - + (bq - 2 b q - ,  + bn-2)  z ~ Q  

+ ( - 2 b q  + b q - , )  .z;(q+l) + b z - ( 9 + 2 ) }  
q n  

Equating like coefficients yields 

1 
b ,  - 2b0 = - 

2 

b, - 2bl t bo = 0 

b, - 2b2 t b, = O 

bq - 2bq-1 + bq-2 = -U q-2v-3  

-2bq  + bq-l = -a q -2v -2 

b = - a  q q-2v-1 
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Solving for the b 's yields 
4 

b 0 = O  

1 

2 
b = -  1 

b = 1  2 

b2v t 2  = u + l  

3 
b2v t3  = - a  0 + U +  - 

2 

b2vt4  = -al  - 2 a 0 + u + 2  

5 
b 2 v t 5  - - a 2  - 2a1 - 3a0 +u - 

2 
- 

AS in the case of the minimum settling time single-rate controller, minimum settling time i s  achieved 

in the above design by letting b = O for q 2 2u + 3. Thus 
4 

3 

2 
a. = u +  - 

al  = - ( u +  1) 

a = o  
m 

(194) 

m 2 2  
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Thus 

r 7 

It is shown in Appendix A that 

-(u+2) K ( 2 )  = (2v + 3) 2-v  - (v + 1) z-(v+1)  - (v + 1) 2 

Now 

(195) 

(1%) 

The system output can be obtained from 

For a ramp input 

T p i 2  

R ( z ; )  = 
2 

(1 - 2,2) 

and 

r 1 

(200) 
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For a s tep input 

1 
R ( z ~ )  = 

1 - z;2 

and 

(202) 

The ramp and s tep response of the above system is plotted in Fig. 25 for the following parameters; 

v = 14, T , / T ,  = 0.25, and T = 20 sec.  It should be noted that the response is slightly faster than the response 

of the singIe-rate system with the same basic sampling period and parameters (Fig. 13). Deadbeat response 

i s  reached in 310 sec vs  320 sec  for the single-rate system. The ripples have also been “reduced” in the 

multirate system output. An examination of the muItirate controller transfer function (198) reveals that the 

multirate controller usually will be much more complicated than the single-rate controller, with a s m a l l  gain 

in overall system performance. A s  in the single-rate case, the minimum settling time design for a ramp input 

yields very poor step response. The addition of extra terms to the digital controller will reduce the s tep 

overshoot when properly chosen. The design for minimum sum of the squared-error samples, which is discuss- 

ed next, will provide a method of properly choosing the extra terms. 

Example 6. Minimization of the Sum of the Squared-Error Samples for a Multirate System 

Minimization of the sum of the squared-error samples of the error pulse sequence for a multirate 

controlled system can be obtained in the same manner a s  in the case  of a single-rate system. This  would 

require the evaluation of 

which becomes very tedious and conducive to calculation error. Equation (204) is especially convenient when 

the error pulse sequence is infinite or extremely long. However, with deadbeat response, the error sequence 
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is finite. Since e (kT) can be obtained from a finite expansion of E (z,,), i t  may be desirable to find the 

individual e (kT)’s  and form the desired sum from the individual terms. If 

where the ’ s  are a function of the “extra” terms in K (2,). Then I 

k = O  i = O  

Conventional calculus techniques can be used to determine the b ’s  so that the sum is minimized. . 4 

This approach will now be applied to the system of Example 3. The digital controller sampler 

operates twice as fast  as the error sampler (n = 2). The plant transfer function G (2,) is stable with a 

zizu- l  factor. 

It h a s  been shown that 

For s tep inputs 

1 
R ( z : )  = 

1 - z;Z 

It h a s  been shown that K (2,) should be of the form 
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to obtain deadbeat response for a ramp input. 

Thus the s tep error i s  given by 

1 
t u o +  a1 2;' + .  . . + - E (2 , )  = 

2 I (1 - 2,1) 

- \Lv  nn 'I I + . . . + (  1 - 2 a 0 - 2 a 1 - . . . -  2am-, - am) zn 

+ (1 - 2a0 - 2a - * * - 2am) tn  -(2v + m +2) 
1 

+ (1 - 2a0 - 2u1 - . . . - 2a ) z - ( 2 v + m + 3 )  + . . . 
m n  

From Eq. (210) i t  appears that the error pulse sequence is an infinite sequence. However, the following 

substitutions will yield a finite sequence. 

(210) 

Since the ah's must satisfy the deadbeat ramp response requirements, Eq. (193) must still be valid. 

Thus 
3 

a0 = - d 0 + v + -  
2 

u = - d ,  + 2d0 - (U + 1) 1 
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Substituting from Eq. (211) into (210) yields 

Erpression (212) is the finite series representation of the s tep error needed to calculate the sum of 

the squared-error samples of the error pulse sequence. Substituting from (212) into (206) to evaluate the s tep  

error sum yields 

2 m 

[e(kT)I = (2w + 1) + (do - u - t) + (dl - w - + (d2 - 
k=0 

The dk's can be chosen to minimize the above sum by applying the conventional calculus techniques 

to yield the following set of simultaneous equations 
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1 
2d0 - d, = V +  - 

2 

2d1 - d3 = V + I  

- d o  + 2 d 2  - d 4 = O 

- d,  + 2d3 - d, = 0 

A general solution for the above s e t  of equations is possible. (Actually,two solutions exist-one 

being valid for m odd and the other for m even.) However, such expressions are cumbersome, and straight- 

forward solution of the equations is trivial for reasonable values of m, and it is unlikely that very many 

terms will be added to the digital controller. 

Now consider the specific system of Example 3. The important parameters of this system are 

v = 14, T l / T  = 0.25, and T = 280 sec.  The minimum settling time controller was derived in which 

m = 2  

a. = 15.5 

al = -15 

and the s t ep  and ramp responses of the minimum settling time system are given by 
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k 
znS1 + 16 zn3' + 16.5 z;33 + 17 z,34 + - 

(Zn)ramp 2 "  

If one term is added to the digital controller, 

I 
I m = 2  

l 
and minimization of the-sum of the squared-error samples of the s tep response error pulse sequence yields i 

do = 7.25 

a. = 8.25 

al = -0.5 

a2 = -7.25 

and the step and ramp responses are given by 

c (2,) = 8.25 znZ9 + 16 zR30 + 8.25 zn3l + z;32 + zn33 + z i 3 4  + - - - 
s tep  

k 
'('n) = T zn31 + 16 zi3 '  + 16.5 z i 3 3  + - - - + - z - ~  + - - 

2 "  ramp 

The numerical value of the sum of the squared-error samples after the digital controller initiates 

control for s tep  and ramp inputs is given by 

2 [ e ( k  +)I2 = 330.125 
k=29 s tep  

5 [e(kf )]' = 52.5625 
k-31 ramp 
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Similarly for other additional terms we have 

m = 3  

do = 7.25 

a, = 7.5 

a. = 8.25 

a, = -8.00 

a2 = 7.75 

a3 = -7 .5  

Cb, )  = 8.25 zn2’ + 8.5 z i 3 0  + 8.25 2 i 3 ’  + 8.5 z i 3 2  + ~i~~ + z i 3 4  + . . . 
s t ep  

00 

[ e ( k T ) ]  = 217.625 
s t e p  

k = 2 9  

[ e ( k T ) ]  = 108.8125 
ramp 

k = 3 1  

A s  in the case of the single-rate controller, a compromise between s tep and ramp error must be 

decided upon. A plot of the sum of the squared-error samples for s tep and ramp inputs vs  the number of 

extra terms in the digital controller will aid this choice. Figure 26 shows such a plot for the system under 

consideration. The s tep and ramp responses for the multirate controlled system above are plotted in Fig. 

27 to 30 for several different “number of extra terms in the digital controller.” 
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VIII. DESIGN FOR STATISTICAL INPUTS 

I t  i s  possible to design an “optimum digital controller” on s ta t is t ical  principles when the statistical 

properties of the inputs, including noise, are known. The conventional design for continuous systems using 

the Wiener-Kolmogoroff theory for optimum filter synthesis has  been extended to sampled-data systems 

(Ref. 22). Minimization of the mean-square sampled error yields the following equations for the digital con- 

troller transfer function D ( z )  as derived in Appendix B: 

where 

W ( 2 )  = 

and 

D ( 2 )  is the digital controller transfer function 

G(z) is the plant transfer function 

G, ( 2 )  is the desired closed-loop transfer function 

$ss(z) i s  the pulse-auto-spectral density of the input signal 

$ s R ( ~ )  i s  the pulse-cross-spectral density of the signal to noise 

$ n , ( ~ )  i s  the pulse-cross-spectral density of the noise to signal 

(218) 

$,,(z) i s  the pulse-auto-spectral density of the noise 

$t ( 2 )  = q5ss(z) + $,,(z) + q5&) + $,,(d 
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+ 
[ F ( z ) ]  
{ F ( z )  )+ z-plane 

denote the factors of F ( z )  with poles and zeros inside the unit circle of the 

- 
[ F ( z ) I  denote the factors of F ( z )  with poles and zeros on or outside the unit circle of 

the z-plane 

When the plant transfer function G ( z )  contains an z-" factor ( a  pure time lag in most c a s e s  when 

n > l ) ,  the physical realizability of the digital controller can be preserved by including the z-" factor in the 

desired closed-loop transfer function G, (2). 

If the plant transfer function i s  stable,  Eq. (219) reduces to 

where the quantities are  defined as for Eq. (219). 

It should be noted that since the desired closed-loop transfer function must a lso contain the pure 

time delay and the actual closed-loop transfer function will usually fall short of the desired, the resulting 

controller will not be a predictor controller, and the output will usually lag the input by at least the pure time 

delay. This  may or may not be acceptable. When the system is subjected to noisy inputs, the above design 

procedure may be necessary to achieve any degree of control in the presence of the noise. 
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IX. SUBRATE CONTROLLER 

A variation of the multirate controller will be called the subrate controller. The subrate controller 

output sampler operates a t  a slower rate than the system error sampler. Thus the controller has  more informa- 

tion about the system's operating conditions before i t  sends a control command to the plant to be controlled. 

In some cases ,  this method should yield a better "predictor" controller than the multirate or s ing lera te  

controller. However, the overall system response may be slightly slower than a multirate controlled system 

response, since the control command rate may be slower with the subrate controller. 

An error-sampled subrate controlled digital system is shown in Fig. 31. The sampling period T of the 

controller sampler S, shall be considered the basic sampling period for the system. The error sampler S, has  

a sampling period of T / n ,  where n is assumed to be an integer to simplify the analysis and design pocedures. 

The conventional approach to the analysis of such a system is to consider the equivalent single-rate system 

shown in Fig. 32. 

The error sampler is replaced by n fictitious samplers with a sampling period T arranged in parallel. 

The inputs to the samplers are advanced in time, and the outputs of the fictitious samplers are delayed an 

equal amount of time. Immediately it is seen that the analysis is complicated by the fact that the system is 

no longer an error-sampled system. In such a case, it is usually possible to obtain only the r-transform of the 

system output rather than an overall system (closed-loop) transfer function. 

I t  can be shown that the z-transform of the output of the subrate controller is given by 

n-1 

where 

3{ F ( s ) }  denotes the z-transfom of the delayed function F ( s )  
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Expression (221) i s  reasonably convenient for analysis of subrate systems for given system para- 

meters and a specific input. However, i t  i s  not a convenient tool for the design of a digital controller s ince 

the terms D ( z )  or D* (s), describing the digital controller, do not appear explicitly. This  problem i s  “solved” 

in the design of the multirate controller by the introduction of the z,-transform denoting the z-transformation 

with respect to the high rate-sampling period T/n .  This approach will be applied to the subrate controller 

after a brief review of the 2,- and z-transform properties. 

The z-transform 8 [ X ( s ) ] ,  and the z,-transforrn [ X ( s ) ]  are defined by the following expressions P n  

r = O  

(222) 

m 

r = O  

There are three combinations of the above transform to be considered for the development of the subrate 

controller. 

F i r s t  consider the case  shown in Fig. 33a, where the continuous input is first sampled by a high-rate 

sampler with sampling period T/n ,  passed through a pulse network with a transfer function D (2,) ( D  (2,) = 

3, [D* (s)] ), and then sampled by the basic rate sampler with sampling period T .  The output of a pulse net- 

work i s  a sequence of “sampled” pulses appearing at the same rate as the input samples. If X(z , )  denotes 

the output of the pulse network D ( z , ) ,  then the output x ( z )  of the basic  rate sampler is given by 

(223) 

where 3 [ X ( z n ) ]  denotes the operation of z-transforming with respect to the basic  sampling period T ,  a pulse 

function X ( z , )  for which the z,-transform with respect to the high-rate sampler is given. This  amounts to 

taking every nth pulse of the .original pulse function X(z , ) .  I t  has been shown that 
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n 
3 [ F ( Z n ) ]  = - 1 c F ( z ,  e-j2Tk’n) 

n k =  1 
(224) 

Now consider the case shown in Fig. 33b, where the input is sampled at the basic rate T and passed 

through a pulse network D ( z ) .  The pulse output X ( Z )  of the network is sampled by a hi#-rate sampler with 

sampling period T / n  to produce the output X ( z n ) .  This  output is given by 

where 3. [ X ( z ) ]  denotes the operation of zn-transforming with respect to the high rate-sampling period T / n ,  

a pulse function X(z,)  for which the a-transform with respect to the basic sampler is given. However, since 

X ( z )  is a pulse function (sequence) with nonzero values only at  t = T ,  2T7 3T,  - - -  , only every nth pulse can 

appear in X(z,) .  Thus 

However, if the pulse network D ( z )  = y[D* (s)] is replaced by a continuous network D ( z )  = j [ D ( s ) ]  

as shown in Fig. 33c, then the expression no longer holds. In this case the output shall be denoted by 

since the modified z-transform X ( z , m )  is necessary to  describe the output of the continuous network at the 

high rate-sampling instants. By definition, the modified z-transform is given by 

where 

O < m S l  
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It can be shown that the output of the high rate sampler i s  given by 

n-1  

k =  1 n 

where 

( 229) 

when the input to the high rate sampler i s  continuous. 

The error-sampled subrate-controlled system is shown in zn- and z-transform notation in Fig. 34. The 

digital controller transfer function D (2 , )  i s  in zn-transform notation since i t s  input i s  sampled a t  the higher 

sampling rate ( n / T  samples per sec). The plant transfer function G ( 2 )  i s  in z-transform notation, indicating 

that i t s  input is  sampled at the basic rate (1/T samples per sec). 

The error equation is given by 

Since C(z,) i s  the output of a high rate sampler preceded by a continuous network preceded by a basic rate 

sampler , 

by direct application of Eq. (229). 
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Now 

Thus 

or 

Now let 

I 

so 

Thus 

(234) 

(235) 

In order to extend the previous design methods for deadbeat.response with a subrate controller, it i s  

necessary to develop an expression for E(z,) .  Equation (237) i s  of a form similar to Eq. (160) in the develop- 

ment of the multirate controller. The multirate controller equation was  solved with the aid of Eq (224) and 
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matrix manipulations. This approach was applied to the subrate controller Eq. (237). Unfortunately, the 

result could not be reduced to a convenient form for design. 

This  phase of the research on digital control of systems with long time delays was concluded at this 

point. I t  i s  hoped that later research will yield a satisfactory design procedure for the development of the 

subrate controller. It i s  felt that this type of controller will yield the best  type of control when the effect of 

the time delay m u s t  be offset by a predictor controller. 
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X. INSTRUMENTATION OF THE DIGITAL CONTROLLER 

I 
The single-rate digital controller transfer function D ( z )  can easily be instrumented with a simple 

~ 

digital computer program. The computer must store past values of the controller (computer) input and output. 

Of course, the input and output are discrete values (samples). 
~ 

Considering the single-rate controller, let  E ( 2 )  denote the z-transform of the input pulse sequence 

and M(z) denote the z-transform of the output pulse sequence. Thus 

It has been shown that the digital controller transfer function is of the form 

Substituting from (239) into (238) and cross-multiplying yields 

h a 
1 . 1  

M(z)  + - D .  M(z) z-J = - d j  E ( 2 ) z - j  
I 

Taking the inverse z-transform of both s ides  of (240) yields (at the sampling instants) 

or 

a 

m ( k T )  = - ' d j e ( k T - j T ) -  ~ f: Di m ( k T  - i T )  

do j = o  '0 i = l  

(238) 

(239) 

(240) 

(241) 

(242) 
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Thus the output of the computer a t  the kth sampling instant i s  just a linear combination of the 

present and past values of the input and past  values of the output. This  i s  indeed an elementary digital 

computer program that can be performed by the simplest of digital computers with sufficient memory, addition, 

and multiplication capacity . 

Example 7. Digital Computer Program for a Single-Rate Deadbeat Controller 

Consider the digital controller required to yield a minimum settling time deadbeat response for a 

ramp input a s  derived in Example 2. In this case 

- T / T 1  
(1 - E 2-l)  (16 - 15 2-l)  

') (1 - 16 z-15 + 15 z-16) 

D ( z )  = 
-T/T 

K ( 1  - E 

(243) 

Thus 

16 1- (z + E - T /  T 1 ) z - ' + -  15 E - T / T 1  

16 
M ( z )  = 

-T/T 
K ( 1  - E ') [ l  - 16 z-15 + 15 z-161 

and 

e ( k T  - 2T) e ( k T -  T )  + - 15 E -T/T1 1 16 [ e ( k n  - (z + m ( k T )  = 
-T/ T 16 K ( 1 -  E 1) 

+ 16 m ( k T  - 15T) - 15 m ( k T  - 1 6 0  (244) 

Equation (244) describes the digital computer program necessary to povide minimum settling time 

deadbeat response for the single-rate system.of Example 2. 
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Now consider the multirate controller problem. It will be shown that the multirate controller usually 

cannot be instrnmented by a simple digital computer pcogram in the same manner as the single-rate controller. 

The multirate controller h a s  the general transfer function D(z,)  given by 

Thus 

However, e ( k T / "  - i is available to the computer only when i = n + d, where d is an integer 

depending on relationship between k and the sampling instant for the low-rate error sampler. This condition 

exis ts  since the error sampler passes only every nth sample with respect to the high-rate sampling period 

T / n .  

This  indicates that a new form for K ( z , )  is needed if a simple digital computer is to be used to  

instrument the multirate controller. Possibly, the controller can be instrumented in its present form by a 

continuous network and the sampler by converting D (2,) to D (s) in the same manner that K (s) was obtained 

from K (2,) to obtain K (z) in the multirate controller development. Table 1 may be useful in converting D (2,). 
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Table 1. Z [F(zn)1  

zn - a 

1 

zn - a2 

1 

3 zn - a 

zn 

z i  + 2azn  + u2 + b2 

1 

z i  + 2az, + a2 + b2 

-k z 

an -1 

z - a" 

Z" - a2 

b [ z 2  - 2 ( a 2  + b 2 ) n / 2  C O S  ( n e )  z + (a2  + b 2 ) " 1  

where 

b e = tan-' - 
-a  

(n -1)/2 
b ( u 2  + b2)"-l  + ( a 2  + b 2 )  s in  [ ( n  - 1) 93 z 

n/2  
b [ z 2  - 2 ( a 2  + b 2 )  cos (nq5)z + (a2 + b2)"I 

where 

Note: This table has been reproduced from Ref. 21. 
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NOMENCLATURE 

w 

we 

wlJ 

i 0 

9’ 
w 

e 

frequency 

error frequency 

output frequency 

input frequency 

center frequency 

phase detector frequencies 

mixer frequency 

filter half bandwidth 

phase 

Oe error phase 

eo output phase 

8, input phase 

O,, O2 phase detector input phases 

phase shifts 

$,,, + l j ,  phase shifts in Fourier series representations of nonlinear element outputs 

phase detector input phases $,, q& 

t t ime 

R (2) 

c ( t )  system output t ime function 

system input time function 
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NOMENCLATURE (Cont’d) 

time variable 

time variable 

total input to nonlinear element 

nonlinear element output 

amplifier output 

high-gain limiter output 

narrow-band filter output 

system error time function 

multiplier inputs 

multiplier output 

filter output 

phase detector inputs 

unit s tep 

system input 

signal amplitudes 

system input 

system output 

system internal signal 

system internal signal 

nonlinear element output 

nonlinear element output 

amplifier output 

high-gain limiter output 

multiplier input 

phase detector input 

discriminator output 
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NOMENCLATURE (Cont'd) 

U 

9 

kT 

S 

resistances 

capacitances 

inductances 

overall system gain 

time delay ratio 

time constant ratio 

kth sampling instant 

Laplace variable 

z-transform variable 

zn-transform variable 

digital controller Laplace transfer function 

digital controller starred Laplace transfer function 

digital controller z-transfer function 

digital controller zn-transfer function 

plant to be controlled Laplace transfer function 

plant z-transfer function 

plant modified z-transfer function 

plant n-transfer function 

error transfer function 

overall transfer function 

statistical development function 

z-transform of system input 

polynomials in 2-1 

z-transform of unit s tep 

n 
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NOMENCLATURE (Cont'd) 

'(')romp z-transform of unit ramp 

c (2, dstep 

c ( 2 7  dramp 

7 { X} 

modified z-transform of step response 

modified z-transform of ramp response 

z-transform of X 

F ~ { X }  modified z-transform of X 

pn { X} 
C ( k T )  

zn-transform of X 

output at kth sampling instant 

T ,  time delay 

T basic sampling period 

T / n  high-rate sampling period 
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I Appendix A. Evaluation of K(z) from K(z,) 

I The problem is to find K (z) from K (2,) for a multirate controller yielding minimum settling time for a 

ramp input to a system with a pure time delay and a first-order lag. We have defined 

where {f (zn)} denotes the operation of z-transforming a function with respect to the sampling period T, a 

function for which the z-transform with respect to T/n i s  known. A straightforward method of finding K ( z )  is 

to obtain the function K ( s )  from which K ( z , )  is obtained. Then K ( z )  is found by z-transform K ( s ) .  

It can be shown that 

where 

k - 1  

n 
< a  a - 1 5  - - 

In the development of the multirate minimum settling time deadbeat controller, it was shown that 

(for n = 2) 

(A-3) 

(A-4) 
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2 
(1 - 2;9 

Applying Eq. (A-3) to (A-5) and collecting terms yields 

K ( z )  = (2 u + 3) z-' - ( u  + 1) z-(' ") - (u  + 1) t-(' + 2 )  

Equation (A-6) is the desired expression for K ( 2 ) .  

(A-5) 

(A-6) 
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I 
I Appendix B. Minimization of the Mean-Square Sampled Error 

The conventional techniques for minimization of the rms error for continuous systems has been 

extended to sampled-data systems (Ref. 22). This criterion will be applied to the error-sampled unity feed- 

back system shown in Fig. B-1 , where G (2) is the transfer function of the plant to be controlled and D ( z )  is 

the digital controller. The system has two inputs - an input signal rs and noise r,,. The closed-loop transfer 

function (output/input) after digital compensation wil l  be denoted by G,(z) and the desired closed-loop 

~ 

i 

I 
I 

transfer function will be denoted by G d ( z ) .  

I 

An important extention of the spectral densities for continuous signals is the pulse-auto-spectral 

density and the pulse-cross-spectral density given by (Ref. 7, p. 543): 
i 
I 

m 

m 

where 

1 N 

It has been shown that the mean-square sampled error is given by 
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Let  

SO 

and 

Now apply variation of parameter techniques s o  that 

( 5 - 5 )  
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I Substituting from (B-3), (B-41, (B-6), and (B-8) into (B-9) yields 

where I 
I 
l 

and 

( B- 10) 

+ss (2) is the pulse-auto-spectral density of the input signal rs 

+nn ( z )  is the pulse-auto-spectral density of the noise rn 

+sn (z) i s  the pulse-cross-spectral density of the input signal to the noise 

+ns ( z )  is the pulse-cross-spectral density of the noise to the input signal 

Now let 

where 

I' denotes factors with poles and zeros inside the unit circle of the z-plane 

1- denotes factors with poles and zeros on or outside the unit circle of the z-plane [ 

(B-11) 
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Substitution of (B-11) into (B-10) yields 

2-1 dz 

(B-12) 

Expand the terms within into a partial fraction expansion such that 

where 

f Q l '  denotes portion with poles inside the unit circle of the z-plane 

I Q I -  denotes the portion with poles on or outside the unit circle in the z-plane 
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Reference 7 states (page 551): "It can be readily shown that the counter (contour) integral 

vanishes if the integrand has i t s  poles either all inside the unit circle or all outside the unit circle (of the 

a-plane)." Thus  i t  can be shown that 

(B-14) 

If (B-14) is to be true independent of ( z )  (from variation of parameter calculus), then 

and 

It can be shown that (B-15) and (B-16) are identical so that 

If G ( z )  has no poles or zeros outside the unit circle, then 
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and 

which agrees with the established design equation of Ref. 7, page 551. 
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DIGITAL - CONTROLLER - W A Y  vco 

a. AUTOMATIC FREQUENCY CONTROL SYSTEM 
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W A Y  

DIGITAL SAMPLER CONTROL - 60, - CONTROCLER .--) AND - FUYCTION AND ' - 
DELAY vco 

b. PHASE-LOCKED-LOOP SYSTEM (APC) 

Fig. 1. Block diagrams of digital AFC and APC systems with delays 
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AMPLlFl ER 
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BAND Dl SCRIM1 NATOR 
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< > 
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Fig. 2. Frequency detector 
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Fig. 3. Discriminator circuit 

a. €2 AND €3 vs FREQUENCY 

I b. OUTPUT €4 vs FREQUENCY (S-CURVE) 

Fig. 4. Discriminator input-output characteristic 

ELEMENT DETECTOR 

I Iwo I WO 

I 0 .  NONLINEAR OPERATION 

I wo 

b. LINEAR OPERATION 

Fig. 5. Frequency detector representation 
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a. NONLINEAR REPRESENTATION 

b. LINEAR REPRESENTATION 

Fig. 6. Phase detection representation 

S-CURVE 
NON LI NEARlTY 

1 
a NONLINEAR AFC SYSTEM 

b. LINEAR AFC SYSTEM 

Fig. 7. Block diagram representation of a digital AFC eysten 
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I 0 .  NONLINEAR PHASE-LOCKED LOOP (APC) 

b. LINEAR PHASE-LOCKED LOOP (APC) 

Fig. 8. Block diagram representation of a digital 
phase-locked loop 

Fig. 9. Nonlinear digital AFC system 
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I 
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SLOPE 0 

SLOPE 0 

~- I I I I I 

SLOPE 4 ;  I 

el e2 e ( k T )  

Fig. 10. Piecewise linear approximation to S-cwe 

Fig. 11. Digital AFC system 
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Fig. 14. Step and ramp response (u = 10, q = 0.25) 
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Fig. 16. Step and ramp response (u = 6, q = 0.25) 
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Fig. 19. Single-ritte svstem response  -one extra term 
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Fig. 22. '4 muitirate controller system 

~ ~~ 

Fig. 24. z,, block diagram 

Fig. 23. Equivalent block diagram 
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TIME, sec 

Fig. 25. Multirate system minimum settling t ime response 

Fig. 26. Multirate system error 

EXTRA TERMS IN DIGITAL CONTROLLER 
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Fig. 27. Multirate system response -one extra term 
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Fig. 28. Multirate system response - two  extra terms 
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Fig. 30. Multirate system response -four extra terms 
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I 

~ 

Fig. 31. A subrete controller system 
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Fig. 32. Equivalent block diagram 
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Fig. 33. Multirate sampler combinations 

Fig. 34. Equivalent system 
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INOISE I 

Fig. B-1. Digital system with noise 
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